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Microbial life usually takes place in a community where individuals interact, by competition

for nutrients, cross-feeding, inhibition by end-products, but also by their spatial

distribution. Lactic acid bacteria are prominent members of microbial communities

responsible for food fermentations. Their niche in a community depends on their own

properties as well as those of the other species. Here, we apply a computational

approach, which uses only genomic and metagenomic information and functional

annotation of genes, to find properties that distinguish a species from others in the

community, as well as to follow individual species in a community. We analyzed

isolated and sequenced strains from a kefir community, and metagenomes from wine

fermentations. We demonstrate how the distinguishing properties of an organism lead

to experimentally testable hypotheses concerning the niche and the interactions with

other species. We observe, for example, that L. kefiranofaciens, a dominant organism

in kefir, stands out among the Lactobacilli because it potentially has more amino

acid auxotrophies. Using metagenomic analysis of industrial wine fermentations we

investigate the role of an inoculated L. plantarum in malolactic fermentation. We observed

that L. plantarum thrives better on white than on red wine fermentations and has the

largest number of phosphotransferase system among the bacteria observed in the wine

communities. Also, L. plantarum together with Pantoea, Erwinia, Asaia, Gluconobacter,

and Komagataeibacter genera had the highest number of genes involved in biosynthesis

of amino acids.

Keywords: microbial communities, lactic acid bacteria, genomes, metagenomics, computational biology, wine,

kefir

1. INTRODUCTION

Lactic acid bacteria (LAB) are a group of microorganisms widely used for production of fermented
food. They play a key role as natural fermentors or are used as starting cultures for a large variety
of foods (Teusink and Molenaar, 2017), such as dairy products, kefir and yogurt (Prado et al.,
2015). LAB are also used in alcoholic beverage production with a prominent role in winemaking,
due to their capacity to perform malolactic fermentation (MLF) (Lonvaud-Funel, 1999, 2002). In
none of these environments do they live in isolation but rather in communities of microscopic
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and macroscopic scale, for example on the skin and in biofilms.
Therefore, LAB should be studied not only in isolation but also
as a part of communities. Consequently, there is a strong desire
to understand their roles in microbial communities, for example
in their stability of communities. A deep understanding of these
roles would enable alterations or even design of communities that
serve a certain purpose. Results in this direction have already
been achieved for small consortia, usually consisting of two
species (Song et al., 2014; Biggs et al., 2015; Zomorrodi and Segrè,
2016). However, interactions in natural communities consisting
of dozens to thousands of species are hard to analyze.

For complex communities, dynamic abundance data has been
used to infer interactions between species within a community
(Faust and Raes, 2012). While this can indeed lead to testable
predictions, these results can also be very hard to interpret as
they do not provide any detail of their underlying mechanism.
For example, a positive correlation between two species can
be caused by niche-overlap, cross-feeding or because these
two species are both affected by a third one (Faust and Raes,
2012). To distinguish these options, the metabolic potential
of the individual species should be taken into account as
many of the interactions will probably take place at the level
of exchange of metabolic products. These analyses currently
typically require large-scale metabolic models (Freilich et al.,
2010, 2011; Harcombe et al., 2014; Zomorrodi and Segrè, 2016).
The reconstruction of such models is a time-consuming process
as it usually requires manual curation, experimental validation,
gap-filling, and an organism-specific biomass composition. As
typically only a small percentage of species within a community
can be cultured individually, the generation of high quality
models for all members of a community is close to infeasible.

Attempts to do so (Magnusdottir et al., 2017) suffer from
a lack of detailed validation of the predictions. Therefore,
approaches that rely on genome-scale stoichiometric models are
currently mostly applicable to small well-described (synthetic)
communities (Mahadevan and Henson, 2012; Harcombe et al.,
2014; Song et al., 2014; Biggs et al., 2015; Tan et al., 2015;
Zomorrodi and Segrè, 2016) but even there one encounters many
technical and biological challenges (Gottstein et al., 2016).

In this paper, we use a purely data-driven approach, with
genomic information as primary input, that allows the creation
of hypotheses about metabolic and other physiological properties
of species in communities without the need to reconstruct
detailed genome-scale metabolic models. The starting point of
this analysis is gene annotation; we use the KEGG Orthology
(KO) Database (Kanehisa and Goto, 2000; Kanehisa et al., 2012)
whereby each KO represents a group of gene orthologs from
different organisms associated with amolecular function. As KO’s
alone can be hard to interpret, we also map these KO’s on KEGG
pathways. This higher level mapping reveals discriminating
features between organisms and leads to testable hypotheses
about their metabolic and physiological characteristics. Although
we used the KEGG annotation tool and database, alternative
resources such as Gene ontology(GO), SEED and MetaCyc
(Ashburner et al., 2000; Overbeek et al., 2005; Caspi et al., 2016)
could be used and yield comparable results (Mitra et al., 2011;
Altman et al., 2013).

We apply this computational pipeline on two different
case studies. Firstly, to investigate Kefir a fermented milk
product made with kefir grains, which consist of a complex
microbial community embedded in a polysaccharide matrix.
These communities consist of dozens of species (Walsh et al.,
2016) whose metabolic capacities are largely elusive. Studies
of the kefir community using metagenomic barcoding already
showed that Lactobacillus was the most abundant genus,
specifically the species Lactobacillus kefiranofaciens, Lactobacillus
buchneri and Lactobacillus helveticus (Nalbantoglu et al., 2014).
We expect that knowledge of their metabolism will provide
more insight in their interactions in kefir and, therefore, we
investigated genomes of 30 organisms isolated from kefir for their
potential metabolism.

The second application of the pipeline is in understanding
the role of L. Plantarum MW-1 in winemaking, by a functional
comparison of microbial communities in three varieties of
wine. Microbial activities are crucial in the formation of wine
flavor and aroma. A prerequisite for improving winemaking
is to understand the dynamics of the microbial communities
in wine and the interactions that take place during the
fermentation (Tempère et al., 2018). The alcoholic fermentation
(AF) at the initial stage of winemaking is performed mainly by
Saccharomyces cerevisiae. Subsequently, Oenococcus oeni, which
due to its overall resistance to the harsh conditions of wine
fermentation, such as high alcohol concentrations, is the best
candidate to start a MLF (Ribéreau-Gayon et al., 2006a,b).
Various studies indicate the possibility to use alternative MLF
starters. L. plantarum strains received interest to fulfill this
role (Hernandez et al., 2007; Testa et al., 2014), due to their
characteristic fermentation profile. To investigate the influence
of L. Plantarum MW-1 on the development of the microbial
communities we followed its inoculation in three different wine
varieties (Bobal, Tempranillo, and Airen) from La Mancha,
Spain, 2013 (one inoculated and two control fermentations per
variety Figures S5, S6). The point of inoculation was chosen to
be at the start, to give precedence of MLF over AF. In this
way, a reduction of total fermentation time is obtainable, and
inhibition of L. plantarum by high alcohol levels is avoided. We
used metagenome shotgun time-series from these fermentations
to study the community. Although next-generation sequencing
(NGS) has recently been applied in food research and particular
in wine fermentation (Kioroglou et al., 2018; Stefanini and
Cavalieri, 2018), the usage of metagenomic shotgun sequencing
that allows a direct identification and comparison of the
functional potential capabilities for a microbial community and
its members, is not yet fully exploited (Morgan et al., 2017a;
Sternes et al., 2017; Zepeda-Mendoza et al., 2018).

2. MATERIALS AND METHODS

2.1. DNA Extraction and Genome
Sequencing of Kefir Isolates
Two milliliters of the culture were pelleted at 15,000 rpm in
a table centrifuge. The pellet was suspended in 600 µl TES
buffer (25mM Tris; 10mM EDTA; 50mM sucrose) containing
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20 mg/ml lysozyme (Sigma-Aldrich, cat# 62971) and incubated
for 30 min at 37◦C. The samples were then crushed with
0.3 g glass beads (Sigma-Aldrich, cat# G1277, 212–300 µm)
at 4m/s for five times 20 s using the FastPrep-24 instrument
(MP Biomedicals). 150 µl 20% SDS was added and after 5
min incubation at room temperature the tubes were centrifuged
at maximum speed for 2 min. The supernatant was digested
with 10 µl proteinase K (20 mg/ml) for 30 min at 37◦C and
proteins were precipitated with 200 µl potassium acetate (5 M)
for 15 min on ice. The samples were then centrifuged for 15
min at 4◦C and the supernatant applied to phenol/chloroform
extraction. DNA was precipitated by adding two volumes of ice-
cold isopropanol and 20 min incubation at –20◦C followed by
washing with 70% ethanol at 4◦C. DNA quality was checked on
agarose gel.

Kefir species were identified by Sanger sequencing of the
16S/ITS (internal transcribed spacer) region, using the primers
S-D-Bact-0515-a-S-16 (GTGCCAGCMGCNGCGG) and S-*-
Univ-1392-a-A-15 (ACGGGCGGTGTGTRC) (Klindworth et al.,
2012). Unique isolates were sequenced using the Illumina HiSeq
2000 platform at EMBL genomics core facility (Heidelberg,
Germany) with 100 bp paried-end reads. The A5-miseq
pipeline was used for quality-based trimming and filtering,
error correction and de novo assembly (Coil et al., 2015).
The assembled genome was annotated using Prokka version
1.11 (Seemann, 2014).

2.2. Sampling and Sequencing of Wine
Fermentations
Wine was sampled in the autumn of 2013 at Bodegas Purisima
Concepcion (La Mancha, Spain) before the fermentation (day
0), during fermentation (days 1,2,3,4,7,14) and at the end of the
fermentation (day 21). Samples of the white wine were taken
from the top of the concrete tank by rapidly lowering a 250
mL baby bottle (single use) to 1 m depth using a rope and
slowly bring it to the top. The wine was decanted to a 50 mL
falcon tube and put directly in a –50◦C freezer. To avoid the
grape skin cap the red wine was sampled from the valve in
the bottom after flushing the valve in order avoid obtaining
residue wine. This was also done after racking of the wine.
Cautions where taken in order to minimize contamination.
Samples were handled wearing gloves and changed between
replicates, aluminum foil was applied on the work station
and changed between replicates, and filter pipettes were used
all the time.

For DNA isolation, cells were pelleted from 50 mL of wine
centrifuged at 4,500 g for 10 minutes and subsequently washed
three times with 10 mL of 4◦C phosphate buffered saline
(PBS). The pellet was mixed with G2-DNA enhancer (Ampliqon,
Odense, Denmark) in 2 ml tubes and incubated at RT for 5
min. Subsequently, 1 mL of lysis buffer (20 mM Tris-HCl-
pH 8.0, 2 mM EDTA and 40 mg/ml lysozyme) was added
to the tube and incubated at 37◦C for 1 h. An additional 1
mL of CTAB/PVP lysis buffer (50) was added to the lysate
and incubated at 65◦C for 1 h. DNA was purified from 1 mL
of lysate with an equal volume of phenol-chloroform-isoamyl

alcohol mixture 49.5:49.5:1 and the upper aqueous layer was
further purified with a MinElute PCR Purification kit and
the QIAvac 24 plus (Qiagen, Hilden, Germany), according
to manufacturer’s instructions, and finally eluted in 100 ul
DNase-free water.

Prior to library building, genomic DNA was fragmented to
an average length of 400 bp using the Bioruptor XL (Diagenode,
Inc.), with the profile of 20 cycles of 15 s of sonication and 90
s of rest. Sheared DNA was converted to Illumina compatible
libraries using NEBNext library kit E6070L (New England
Biolabs) and blunt-ended library adapters described by Meyer
and Kircher (2010). The libraries were amplified in 25-mL
reactions, with each reaction containing 5 muL of template DNA,
2,5 U AccuPrime Pfx Supermix (Invitrogen, Carlsbad, CA), 1X
Accuprime Pfx Supermix, 0.2 uM IS4 forward primer and 0.2
uM reverse primer with sample specific 6 bp index. The PCR
conditions were 2 minutes at 95◦C to denature DNA and activate
the polymerase, 11 cycles of 95◦C for 15 s, 60◦C annealing for
30 s, and 68◦C extension for 40 s, and a final extension of 68◦C
extension for 7 minutes.

The quality and quantity of the libraries were measured
using the high sensitivity DNA analysis kit on the Bioanalyzer
2100 (Agilent technologies, Santa Clara, United States),
and the libraries were pooled at equimolar concentration.
Sequencing was performed on the Illumina HiSeq 2500
in PE100 mode and MiSeq in 250PE mode following the
manufacturer’s instructions.

2.3. General Workflow of Functional
Computational Analysis
The general workflow that we follow is illustrated in Figure 1.
The starting point of the analysis is gene annotation to determine
orthologous genes (Gabaldn and Koonin, 2013) for which we
use BlastKoala and GhostKoala (Kanehisa et al., 2016), through
webservices provided by KEGG (Kanehisa et al., 2013). These
webservices map genes to KEGGOrthologs (KO’s) that represent
groups of orthologous genes which are linked to a molecular-
level function. Based on their KO content, the organisms and
samples can be clustered. This process yields several groups of
distinct characteristics that are determined using diverse data
mining techniques and mainly, but not exclusively, concern
the metabolic potential. Finally, these characteristics enable
the formulation of specific hypotheses about the physiological
properties of species and a community as a whole in individual
samples. Other methods for the analysis of genome information
on the functional level exist, such as MG-RAST (Meyer et al.,
2008) and Megan (Quince et al., 2017). HUMAnN (Abubucker
et al., 2012) was the first to incorporate microbial pathway
abundances for metagenomic data. We choose to apply a custom
pipeline to be generic and allow high versatilely throughout the
analysis. Moreover, the use of the published BlastKOALA and
GhostKOALA from KEGG (Kanehisa et al., 2016) provides an
up to date annotation with KEGG database. Alternative, eggNOG
(Huerta-Cepas et al., 2016) provide a strong framework for
orthology annotation. All figures were visualized using base R
packages (R Core Team, 2016), ggplot2 (Wickham, 2016) and
pheatmap (Raivo, 2019).
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FIGURE 1 | Graphical representation of the general work-flow for the functional analysis. Starting point of the analysis is a gene annotation which is carried out using

BlastKoala and GhostKoala in this study. We use the gene orthologs (KO’s) to cluster species and samples based on their KO content. From the individual clusters we

extract the characteristic features which leads to educated predictions about the functional potential of individual species and a community present in a sample. In the

case of isolates, the predictions are confirmed using MetaDraft that does not rely on KO’s.

2.4. Metagenomic Sequence
Prepossessing
Quality control and filtering was applied on all paired-read
data using FastQC v0.11.4 (Andrews, 2010) before and after the
application of Trim Galore v0.4.1 (Andrews, 2012) and Cutadapt
v1.9.1 (Martin, 2011), tools for quality and adapter trimming.
Subsequently, the reconstruction of full-length small subunit
(SSU rRNA) gene sequences was obtained using EMIRGE (Miller
et al., 2011) with the SILVA 123 SSURef Nr99 database (Pruesse
et al., 2007). A taxonomy was assigned using SINA Alignment
Service on the resulting SSUs (Pruesse et al., 2012). The resulting
SSU’s were clustered to OTUs with 97% identity using UCLUST
(Edgar, 2010) and the estimates of relative taxon abundances

provided by the program added and normalized accordingly. A
chimera sequence check was performed using UCHIME (Edgar,
2016). For both tools the qiime interface was used (Caporaso
et al., 2010). Afterwards, the OTUs were arranged to a BIOM
table with a custom R script (R Core Team, 2016), to allow
further analysis.

2.5. Sequence Binning
For each grape variety the metagenome shotgun samples were
merged together to achieve deep coverage, and were assembled
with the Iterative De Bruijn graph de novo Assembler for short
reads sequencing data with highly Uneven sequencing Depth
(IDBA-UD) (Peng et al., 2012). The resulting contigs were binned
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with Maxbin 2.0 (Wu et al., 2014, 2015), which clusters the
sequences into draft genomes (bins) using the tetranucleotide
frequencies and sequence coverage. For differential coverage,
all the metagenome samples belong to fermantaitons of the
same grape variety were used. Furthermore, bin taxonomy
assignments were carried out following the multi-metagenome
pipeline (Albertsen et al., 2013). Maxbin calculates a quality of
the resulting bins, using occurrence of essential genes to calculate
a completeness score for the entire bin.

2.6. Gene Annotation
The gene annotation was carried out using BlastKoala
and GhostKoala (Kanehisa et al., 2016) using the
databases, “genus_prokaryotes” and “genus_prokaryotes”
or “genus_prokaryotes plus family_eukaryotes” for the kefir
isolates and the metagenomic samples, respectively. While
protein fasta files can be directly submitted to BlastKoala
when isolates are examined, a re-assembly with IDBA-UD was
necessary before submission of metagenome samples (Peng
et al., 2012). To predict the open reading frames (ORFs), we
used prodigal (Hyatt et al., 2012) with parameterization for
metagenome data. The produced ORFs are then used as an input
for GhostKOALA, which provides the KO (KEGG Orthology)
assignments. Also, the effect of different sequencing depth on the
number of predicted ORFs was investigated Figure S7.

2.7. Calculation of Feature Matrices and
Clustering
Using the output from BlastKoala and GhostKoala, several
feature matrices were calculated. In the case of microbial isolates,
a feature matrix K is constructed of dimensions n×m wherem is
the number of isolated species and n is the number of KO’s. The
entries kij are 1 if the KO j is present in species i and 0 otherwise.
A r × m feature matrix P was calculated, whose r rows and m
columns correspond to KEGG pathway ID’s and isolated species,
respectively. The entries pij thereby represent the number of KO’s
present in pathway i for species j. To account for the different
pathways sizes, pij is normalized with respect to the total number
of KO’s present in pathway i.

For the analysis of the metagenomic data, a n × m feature
matrix G was constructed by calculating sequence abundance
per KO and summing these per genus. The entries gij equal the
number of sequence reads of the genus i present in sample j. To
account for variability in sequence reads per sample the entries
gij were normalized with respect to the number of sequence reads

per sample gj and multiplied by 1 million (
gij
gj

× 106). We also

took into account the inoculation of Lactobacillus plantarum
and further normalize all samples using the complement (1 −

glactobacillus) of the Lactobacillus genus abundance (
gij

1−glactobacillus
)

Another feature matrix A was calculated in which entries aij
equal the number of sequence reads mapped to a KO-genus
combination i present in sample j. This matrix yields a very large
number of features and, consequently, very detailed information.

Finally, a feature matrix PM is used to explore biological
implications by mapping KO’s to KEGG pathways. Similarly,m is
the samples during the fermentations, on the other hand n now

is the KEGG pathway IDs tagged with genera. The entries pmij

thereby represent the number of KO’s present in pathway i in
sample j. To account for the different pathways sizes, pmij was
normalized with respect to the number of KO’s per pathway i.

Clustering analysis is performed using affinity propagation,
which is a graph based approach (Frey and Dueck, 2007;
Bodenhofer et al., 2011). Pearson correlation was frequently
chosen as the final similarity measure and Bray-Curtis similarity
in few cases. A general work-flow to assess the most suitable
number of clusters is started with high exemplar preferences
values, which led to a very large number of clusters. Application
of agglomerative clustering on the resulting affinity propagation
clusters using the R-package apcluster (Bodenhofer et al.,
2011), allowed an inspection of the corresponding dendrogram
(Figure S1). Therefore, a cutoff manually decided and affinity
propagation rerun repeatedly to achieve the desirable number
of clusters.

2.8. Feature Selection
The R package Boruta (Kursa and Rudnicki, 2010) was used
to obtain a reliable ranking of feature importance and to select
only discriminative features for different classification tasks. This
algorithm is a wrapper around Random Forest (Breiman, 2001)
that performs randomization tests. Features with confidence of
importance above 0.99 (the default value in Boruta) were treated
as informative. Also the maximal number of importance source
runs was increased to 2000 and in some cases to 5000. As the
input one of the 75 × z feature matrices described above (where
75 corresponds to the number of samples) were used, with z
varying from around 1016 to 228.256 features depending on the
matrix. For example, when summing up all KO abundances per
genus the resulting matrix is 75× 1016. On the other hand, when
using KO-genus combinations as features, the matrix extended to
75×228256 after filtering. For supervisedmachine learning, apart
from an input feature matrix X also a response vector Y is used.
Here we used prior knowledge of the samples and constructed a
response vector based on red or white wine varieties (two classes)
or the individual grape varieties (three classes).

2.9. Computational Validation
2.9.1. Validation of KEGG Functional Annotation With

MetaDraft
As only around 50% of the genes can be mapped to KO’s (see
Table S1) when analyzing kefir isolates, it is unclear how much
information will be lost by mapping compared to just using
all genetic information. We therefore created template models
for selected KEGG pathways and then used MetaDraft (See
section S7; Figure S24) to determine genes that are present in
an organism. For a given pathway, all reactions were retrieved
along with their corresponding genes that are found in organisms
belonging to the phylum Firmicutes using the Python package
BioServices (Cokelaer et al., 2013). Within MetaDraft, the
AutoGraph method (Notebaart et al., 2006) is used, which is a
sequence based orthology approach, independent of functional
annotation. It is therefore suitable to serve as an independent
method to validate the results obtained using KO’s.
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FIGURE 2 | Isolates of the kefir consortium can be grouped using annotated genomes. In (A) species are clustered based on presence and absence of KO’s yielding

eight different clusters. A similar result is obtained when species are clustered based on pathway enrichment i.e., the number of KO’s present per pathway (B).

2.9.2. Validation Computational Findings in

Metagenomics
In metagenomics, a computational validation perform using 16S-
rRNA reconstruction and binning, which aims to reach the
species level of taxonomy. Therefore, it provides extra confidence
for the hypothesis generated with the basic computational
pipeline on genus level. Moreover, an extra computational
validation performed on the concluding results from pathways
enrichment analysis on LAB comparison. By removing all
close identical sequences (below 99% amino acid similarity)
from metagenome samples of reconstructed bins and complete
isolate genomes of interest (L. plantarum), for example potential
exclusive contribution of the high PTS of L. plantarum can
be determined. Therefore, prediction of an accurate shift of
functional potential of the community induced by a single species
can be identified.

2.10. Assessing Motility of Acetobacter
Motility of Acetobacter was tested on MRS/whey agar (26 g MRS
broth from OXOID, 16 g agar, 500 ml water and 500 ml kefir
whey, 48 h fermentation). The plates were incubated for 3 to 4
days at 30◦C. Motility was regarded as positive when the cultures
spread into the agar and around the spotted colony. Growth only
at the spotted area was rated negative. Motility was observed after
already 1 day for all four Acetobacter isolates. Growth on YPDA
for up to 4 days at 30◦C revealed no motility.

3. RESULTS

3.1. Grouping of Genera Based on
Presence of KO’s
We isolated and sequenced 33 organisms from kefir communities
(see section 2.1 for details). To identify discriminative factors
between species, we first focused only on the presence and
absence of KO’s per species and cluster the species based on the
KO content using affinity propagation. Hierarchical clustering on
top of this result identified eight distinct clusters that separate

and in some cases subdivide the genera of Lactobacilli, Lactococci,
Rothia, Acetobacter, Staphylococci andMicrococci (Figure 2). See
section 2.7 and Figure S1 for details. This result shows that the
KO content alone already has discriminative power and can also
lead to non-trivial results, as not only organisms of the same
genus group together but also organisms of different genera.
The interpretation of the results is, however, not straightforward
as the molecular functions assigned to the KO’s cannot easily
be translated into predictions about physiological characteristics
that distinguish the clusters. Therefore, further analyses is
required, as described below.

3.2. KEGG Pathway Coverage
Discriminates Two Groups of Lactobacilli
To understand the clustering results better, we mapped the KO’s
to the level of KEGG pathways and calculated pathway coverage
(which is the number of KO’s present in this organism in this
pathway divided by the total number of KO’s in the pathway, see
section 2.7). Pathway coverage was subsequently used as input for
another clustering. The resulting hierarchical clustering shown
in Figure 2 is similar to the one obtained based only on KO
presence, except for the Lactobacilli. Whereas, these form a single
cluster in the previous dendrogram, they are distributed over two
clearly separated clusters when using pathway coverage.

To identify the pathways that discriminate the two groups
of Lactobacilli, we determined all pathways that have a
high standard deviation with respect to their coverage. They
are shown in Figure 3. The most notable differences are
associated with amino acid metabolism: In L. kefiranofaciens,
histidine, phenylalanine, tryptophan and tyrosine metabolism
is completely absent while the remaining Lactobacilli all
have KO’s associated with the synthesis pathways for these
amino acids. Conversely, L. kefiranofaciens has 27 entries on
the phosphotransferase system (PTS) pathway map, whereas
the remaining Lactobacilli have at most 7 KO’s on this
map (Figure S2).
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FIGURE 3 | Pathway enrichment reveals differences between organisms within one cluster and between clusters. In (A) the six lactobacilli isolated from the kefir

consortium are compared regarding their pathway coverage. We show the KEGG pathways that have the highest standard deviation based on their pathway

coverage. The organisms differ significantly in coverage of e.g., histidine, phenylalanine, tryptophan, and tyrosine metabolism. These pathways are absent in

L. kefiranofaciens but present in all other lactobacilli (B); green means that a KO is present associated with the respective reaction. As there are no KO’s found in the

maps for L. kefiranofaciens, the maps are not shown). In (C) the representatives of each cluster (determined by affinity propagation) are compared and the pathways

are listed that show the highest standard deviation regarding their pathway coverage. Acetobacter (Asyzygii_2_380) have the highest enrichment for both flagella

assembly and chemotaxis (discussed in the main text).

3.3. Identifying Discriminating Signaling
Pathways and Structural Components
This method is not restricted to metabolism but can also
make predictions about structural and signaling components
represented in KEGG pathways. By identifying the pathways
that show the highest standard deviation with respect to their
coverage between a representative of each of the clusters, we
found that only Acetobacter has KO’s associated with flagella
assembly (Figure 3). They also have the highest pathway coverage
for bacterial chemotaxis (Figure 3) which is related to oxygen
sensing. Since they are strict aerobes (Sievers and Swings, 2015)
both observations would be in agreement with the hypothesis
that they use chemotaxis to move on oxygen gradients, and
possibly also on gradients of their carbon- and energy source. The
presence of flagella in Acetobacter was experimentally confirmed
(see section 2.9).

3.4. Results of KO Annotation Are
Consistent With Systematic Pathway
Reconstruction
These analyses show that it is possible to create hypotheses
about metabolic capacities and structural properties in a fast
manner using annotated genomes, in this case annotated with
KO’s. As only around 50% of the coding sequences can be
mapped to KO’s (Table S1), there is the possibility that important
reactions which do not have KO’s associated with them are
missed. Therefore, we confirmed the results shown in Figure 3

using an approach that does not rely on KO’s but uses only
sequence information. For the KEGG maps containing histidine
and phenylalanine, tyrosine and tryptophane synthesis pathways,
respectively, we created stoichiometric models by retrieving
all genes associated with reactions in the respective pathways

that belong to organisms of the phylum Firmicutes which
also covers the genus Lactobacillus. Subsequently, InParanoid
(O’brien et al., 2005) was used to find orthologs in sequences
of the kefir isolates, the corresponding reactions were identified
and compared to the reactions associated with present KO’s. The
results obtained in this way are consistent with the BlastKoala
output (Figures S3, S4, and see section 2.9 for details), however,
the analysis is far more time-consuming than running BlastKoala
even if only these two pathways are considered.

3.5. Dynamics of Genera in Wine
Fermentations
The metagenome of each sample was assembled into contigs
and scaffolds (see section 2.6). The open reading frames (ORF’s)
on these sequences were identified and annotated with KO’s
using GhostKoala. An overview of the dynamics of abundances
of genera was obtained by summing the KO coverage, i.e., the
number of reads mapped to the ORF corresponding to the
KO, per genus, in each of the samples (Figure 4). Although
our basic computational pipeline aims to explore the functional
potential of the community, in metagenomics the overview of
abundance dynamics can be obtain without extra workload.
The table of genera abundances was normalized, and genera
with a high standard deviation of abundance across the samples
were kept (see section 2.7). A few notable patterns appeared.
Firstly, the Lactobacillus genus is highly abundant in the samples
inoculated with L. plantarum. However, the abundance of
Lactobacillus diminished in time when inoculated in the two
red grape varieties, Bobal and Tempranillo, whereas in the
white grape variety, Airen, it was highly abundant and the
abundance increased during the fermentation. Furthermore,
Lactobacillus was also present in the Airen controls, in contrast
to the control fermentations of the red varieties. Secondly, the
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FIGURE 4 | Three types of wine fermentations of grape varieties, Bobal, Tempranillo and Airen indicated by the color bars on top of the figure, the samples are in

chronological order of fermentation from left to right. The top color bars and circles indicate the L. plantarum inoculations compared to the control fermentations. The

Figure shows an overview with abundance of genera in the different wine fermentations, as derived from taxonomic annotation of the metagenome sequences. Only

the genera with the highest standard deviation of their abundance across the fermentation are kept. (Top) contain the highest abundance genera, while the (Bottom) is

selected specifically for visualization of Aspergillus and Sclerotinia.

abundance of Lactobacillus in the Airen variety seems to correlate
negatively with the abundance of two genera (Aspergillus and
Sclerotinia), which are spoilage molds. Thirdly, the abundance
of Lactobacillus is positively correlated with multiple genera
such as Pediococcus, Enterococcus, Oenococcus (see Figure 4).
Fourthly, some genera are present in fermentations of all
three grape varieties, like Pseudomonas, Azotobacter, Vitis and
Saccharomyces. Fifthly, some genera occur in fermentations of
one variety only, such as Pantoea and Gluconobacter in Airen,
Dyella and Rhodanobacter in Tempranillo, and Bradyrhizobium
and Acetobacter in Bobal (see section S5; Figures S17, S19,
S20, for a systematic investigation of discriminative genera and

the corresponding pathways for each wine variety). Finally,
the observation of Saccharomyces and Vitis (grape) DNA is in
agreement with the prior knowledge that during the alcoholic
fermentation Saccharomyces abundance is high and that grape
skins are only added at the start of the red wine fermentations
and not in the white wine fermentations.

3.6. Clustering of Samples Based on KO
Abundance in Genera
The mapped data were used to create a table of the KO
abundances per genus, which increases the feature space
substantially relative to summing these numbers per genus
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FIGURE 5 | Metagenomics samples of wine fermentation grouped with high resolution using annotated metagenomes. Samples are clustered based on the KO’s

abundance yielding six different clusters. Left color bar and squares indicates the samples of individual clusters. Similarly inner right side bar legend describe the big

majority of the samples. The outer right side bar indicates coloring of the correlation. The resulting groups reveal three discriminative modes.

as done above. The samples were clustered using affinity
propagation on the Pearson correlation matrix of this table
(see section 2.7). This resulted in a high resolution grouping
of samples (Figure 5), evidently better than when using
reconstructed small subunit (SSU) rRNA abundances (see
Figure S10). The microbiomes of the red and white grape
varieties could be distinguished, as well as three different stages
of fermentation separating the samples of the initial grape
must phase, the samples during fermentation, and bottled or
final samples of the time series. Finally, the samples of the
Airen variety inoculated with L. plantarum formed a highly
correlated separate cluster. The robustness of the clustering was
tested by removing major genera (Lactobacillus, Oenococcus and
Saccharomyces) and a potential artifact (Vitis) from the data and
reapplying the clustering. The main groups remained essentially
unchanged after this procedure (Figure S15).

3.7. L. plantarum Has the Highest PTS
Potential Among the Community
To confirm that the Lactobacillus genus pattern identified so far
is indeed the result of the added L. plantarum MW-1 strain, we

applied a 16S-rRNA reconstruction and binning (see sections
S2–S4; Figures S8, S9, S11–S14). As a result we obtained a
reconstruction of 16S-rRNA genes of L. plantarum. Moreover,
the L. plantarum draft genome was successfully binned with a
high completeness score. Using a few well reconstructed genomes
from the binning process, we demonstrate the potential usage
of our method also on metagenomic bins. We compared the
L. plantarum isolate strain with the reconstructed Lactobacillus
brevis genome bin from the Airen fermentations and the three
reconstructed Oenococcus oeni genome bins from each variety
of grape. The comparison revealed that the L. plantarum
and L. brevis bins had a higher metabolic potential than the
three Oenococcus bins, especially with regard to amino acid
metabolism, PTS and sulfur relay system KEGG pathways
(see Figure 6A). Using metagenomic assembly annotations the
coverage of Lactobacilli PTS stood out when L. plantarum
was present in the fermentations. (see Figure 6B top). The
same effect was observed for genes mapped to amino acid
metabolism. Moreover, in addition to Saccharomyces, Pantoea,
Komagataeibacter,Gluconobacter, Erwinia, andAsaiawere found
to be in the top ten genera with high coverage of amino acid
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FIGURE 6 | Pathway enrichment reveals differences between the major malolactic fermentors. In (A), a comparison between L. plantarum, O. oeni bins and L. brevis

bin. The right side color bar visualizes the percentage of the coverage of each pathway. In (B), the top ten genera on pathway coverange for PTS (top panel) and

amino acids biosynthesis (bottom panel). Only samples with more than 5% coverage are shown, which results in seven genera visualized in the top panel (B).

metabolism (Figure 6B bottom). Interestingly, Boruta feature
selection analysis assigns the latter five genera as discriminative
for Airen against Bobal and Tempranillo (Figure S16).

4. DISCUSSION

The examples demonstrating computational analysis on
functional and metabolic level show that it is possible to
characterize organisms or samples based on KO annotation of
genomes, and that hypotheses concerning the physiology and
roles of organisms can be derived. This approach is especially
useful when studying complex communities. It aims at grouping
and contrasting of species by a global comparison of functions.
It thereby provides evidence for groups of organisms that
might play similar roles, or points to their differences and
putative specific roles that they might play in a community.
Our computational pipeline can be used in several ways in the
research of microbial communities.

When genome sequences of individual community members
are available, they can be easily characterized in terms of their
functional potential. This is particularly relevant for communities
that are not well described. As an example, the Acetobacter
species stood out among the kefir isolates by the fact that they
possess structural genes for the assembly of flagella, as well as a
chemotaxis signaling system possibly involved in oxygen sensing
Figure 3. Since their motility was confirmed experimentally,

these observations suggest an important role for chemotaxis of
this species in kefir. Indeed, Acetobacter is mostly present in kefir
milk, and less in the semi-solid grains, which is in accordance
with this hypothesis (Marsh et al., 2013).

Another important observation was that L. kefiranofaciens,
a dominant organism in kefir (Walsh et al., 2016), stands out
among the Lactobacilli because of the absence of biosynthesis
pathways for a number of amino acids. This species will therefore
most likely have several amino acid auxotrophies. Hence, the
organism will depend on free amino acids and peptides in milk,
which can be present in fresh milk, are released by extracellular
enzymatic degradation of milk protein or are produced by other
organisms. Whichever way, these auxotrophies will play an
important role in the ecology of kefir fermentation.

One should, however, keep in mind that the characterization
only concerns genotypic potential. Whether and under which
conditions the same genotypic potential also results in identical
phenotypes will have to be examined in experiments. We
anticipate that the absence of a pathway is more conclusive than
its presence as it is most likely context and media dependent
whether genes of a pathway are expressed. We strongly believe
that this approach provides more insights than a clustering
based on gapfilled genome-scale stoichiometric models. To
accurately close gaps in pathways one would have to determine an
organism-specific biomass composition and grow the individual
species under several different conditions to e.g., identify
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auxotrophies and carbon sources that can be utilized which is
very time and resource consuming. It is also very challenging
from an experimental point of view as species can be hard to
cultivate in isolation. Alternatively, one could also automatically
gapfill all the models without experimental validation on a
defined medium but then one might miss auxotrophies that
can lead to metabolic interactions and the added value of the
gapfilling is more than questionable. The presented method
focuses only on the gene-associated reactions avoiding all
unnecessary overhead and a fast selection of interesting species
that can then be examined further in experiments.

Computational analysis was further applied to metagenome
data of wine fermentations to explore the effect of the
introduction of a L. plantarum strain on community composition
and dynamics. Furthermore, the dataset, although limited,
also allowed an initial exploration of differences between
communities in red and white wine fermentations. Together
with the functional annotation GhostKoala provides also
taxonomic assignment on genus level, which allows not
only the exploration of the functional potential of the
community, but also the straightforward investigation of genera
abundances dynamics.

Therefore, we readily found evidence to support the
hypothesis that successful inoculation of a new species to a
community was in the case of wine an effect firstly of medium
composition, and may determined by fermentation with skin or
without skin. Nevertheless, the effect of microbial community
interactions such as competition or collaboration cannot be
discarded. The experimental results supported this hypothesis
(See section S1; Figures S21, S22). Studies on the closely related
species Lactobacillus hilgardii and Pediococcus pentosaceus
indicated that phenolic compounds from grape skins could be
involved (García-Ruiz et al., 2009). Therefore, the identification
of the mechanism behind the inhibition by phenolic compounds
as well as the selection of strains resistant to these could play a
key role for the usage of organism other than O. oeni for MLF in
red wines.

The use of annotated metagenomes allowed a fast overview
of the community abundance dynamics, such as time-dependent
abundance level per genera, presence of common genera in
different microbiomes and identification of unique genera in
the microbioomes of grape varieties. In addition, we identified
putative positive and negative correlations with L. plantarum,
suggesting for example that L. plantarummay inhibits growth of
fungi (Aspergillus, and Sclerotinia), as has been observed before
(Valerio et al., 2009; Tropcheva et al., 2014; Lipińska et al., 2016).

By binning metagenomics data and using these to investigate
KEGG pathway enrichment, we showed that L. plantarum
is highly enriched in PTS transport components compared
to the other microorganisms in the wine communities.
Only a few other metabolic conversions are exclusively
found in L. plantarum (Fructoselysine/Glucoselysine
→ Fructoselysine/Glucoselysine 6-phosphate, N-Acetyl-
galactosamine → N-Acetyl-galactosamine 6-phosphate,
Galactosamine → Galactosamine 6-phosphate (See section S6;

Figure S18). These unique properties could play a role in growth
of the community.

The shannon index reveals substantial differences in
microbial diversity between the white and the two red
varieties (Figure S23). The relative abundance of S. cerevisiae
reaches up to 90% in the red wine fermentations whereas
in the white wine fermentations it reaches up to 60%. Also,
Pantoea, Erwinia from Enterobacteriaceae family and Asaia,
Gluconobacter and Komagataeibacter from Acetobacteraceae
family are exclusively found in the white wine fermentations.
These genera are known to be relevant for wine making
(Marzano et al., 2016),(Morgan et al., 2017a), in particular acetic
acid bacteria for their capacity to oxidize ethanol to acetic acid
(Gomes RJ, 2018). Yet, their potential function inside wine
communities is not fully explored. We have shown that these five
genera have high coverage of metabolic pathways involved in
amino acid metabolism. Amino acids, together with ammonium
salts, are major nitrogen sources present in grapes, and are
essential for microbial growth (Waterhouse, 2016). Moreover,
the composition of amino acids seems to influence wine aroma
(Hernández-Orte et al., 2002) (Styger et al., 2011). Therefore,
studies already examined the effect of microorgansims on amino
acid composition during AF (S. cerevisiae Fairbairn et al., 2017)
and MLF (O. oeni and L. plantarum Pozo-Bayón et al., 2005).
With this in mind, we suggest that the five genera mentioned
above are candidates for future investigation.
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