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Abstract

Background: Haem oxygenase-1 (HO-1) catabolizes haem and has both cytotoxic and cytoprotective effects.
Polymorphisms in the promoter of the Haem oxygenase-1 (HMOX1) gene encoding HO-1 have been associated
with several diseases including severe malaria. The objective of this study was to determine the allele and
genotype frequencies of two single nucleotide polymorphisms; A(−413)T and G(−1135)A, and a (GT)n repeat
length polymorphism in the HMOX1 promoter in paediatric malaria patients and controls to determine possible
associations with malaria disease severity.

Methods: Study participants were Ghanaian children (n=296) admitted to the emergency room at the Department of
Child Health, Korle-Bu Teaching Hospital, Accra, Ghana during the malaria season from June to August in 1995, 1996
and 1997, classified as having uncomplicated malaria (n=101) or severe malaria (n=195; defined as severe anaemia
(n=63) or cerebral malaria (n=132)). Furthermore, 287 individuals without a detectable Plasmodium infection or
asymptomatic carriers of the parasite were enrolled as controls. Blood samples from participants were extracted
for DNA and allele and genotype frequencies were determined with allele-specific PCR, restriction fragment
length analysis and microsatellite analysis.

Results: The number of (GT)n repeats in the study participants varied between 21 and 46 with the majority of
alleles having lengths of 26 (8.1%), 29/30 (13.2/17.9%) and 39/40 (8.0/13.8%) repeats, and was categorized into
short, medium and long repeats. The (−413)T allele was very common (69.8%), while the (−1135)A allele was
present in only 17.4% of the Ghanaian population. The G(−1135)A locus was excluded from further analysis after
failing the Hardy-Weinberg equilibrium test. No significant differences in allele or genotype distribution of the A
(−413)T and (GT)n repeat polymorphisms were found between the controls and the malaria patients, or between
the disease groups, for any of the analysed polymorphisms and no associations with malaria severity were found.
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Conclusion: These results contribute to the understanding of the role of HMOX1/HO-1. This current study did not
find any evidence of association between HMOX1 promoter polymorphisms and malaria susceptibility or severe
malaria and hence contradicts previous findings. Further studies are needed to fully elucidate the relationship
between HMOX1 polymorphisms and malarial disease.
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Background
In malaria patients, a large number of infected erythro-
cytes rupture in the bloodstream, releasing considerable
amounts of erythrocyte haemoglobin [1], which is oxi-
dized and releases its haem moiety [2]. This results in
large quantities of free haem, which can be highly cyto-
toxic to both host cells and parasites [1-3]. Survival of the
host relies in part on ability to prevent the cytotoxic and
inflammatory effects of the free haem. Free haem is only
found under pathological conditions because excess haem
is usually removed via the microsomal haem degradation
(MHD) pathway. However, this pathway may become sat-
urated in situations with large amounts of free haem [3,4].
The rate-limiting enzyme of the MHD pathway is Haem
oxygenase (HO) [5]. Two isoforms (HO-1 and HO-2) have
been characterized and are expressed in humans. HO-1 is
the inducible isoform, whereas HO-2 is the constitutive
isoform [6]. HO-1 is a highly inducible 32 kDa protein,
with the highest activity in spleen, liver and bone marrow,
where senescent erythrocytes are sequestered and de-
graded [7,8]. The HO-1-encoding gene HMOX1 is located
on chromosome 22q12 [9], is approximately 14 kb long,
and organized into 4 introns and 5 exons [7]. Transcrip-
tional control of HMOX1 is governed by multiple regula-
tory elements localized in the promoter of the gene, as
well as by enhancers, responsible for HMOX1 induction
in response to increased haem concentration [10,11]. HO-
1 catabolizes free haem into biliverdin (that is immediately
converted to bilirubin), releasing ferrous iron (that is se-
questered into the iron storage protein ferritin) and car-
bon monoxide (CO) [8]. All of these have been associated
with the cytoprotective effects of HO-1. Indeed, bilirubin
is a potent and abundant antioxidant in mammalian tissue
[12,13] and ferritin is a cytoprotective molecule [14,15],
whereas CO may affect the regulation of apoptosis
[16-18], and inflammation, and has been suggested to
mimic the cytoprotective effects of HO-1 [19]. However,
high levels of HO-1 related products might also have
damaging effects, resulting in an overall pro-oxidant ef-
fect, being cytotoxic and causing tissue damage
[5,15,20-22]. Although both protective and damaging
properties of HO-1 have been shown, HO-1 is essential
and HO-1 deficiency leads to severe illness and death in
both humans and mice [23-25].
Humans have been shown to differ quantitatively in
their HMOX1/HO-1 activity due to polymorphisms in
the HMOX1 promoter [26-29]. Two single-nucleotide
polymorphisms (SNPs); T(−413)A and G(−1135)A, and
a (GT)n repeat length polymorphism in the HMOX1
promoter have been described [7,27,28]. The T(−413)A
SNP has been shown to influence promoter activity, with
the A allele having a significantly higher activity in vitro
compared to the T allele [27], while the functional im-
portance of the G(−1135)A SNP is still unknown
[28,30]. Finally, the (GT)n repeat length polymorphism
has been described in several studies in various ethnic
populations with repeat size varying from 13 to 45 re-
peats and main alleles at 23, 30 and 39 repeats
[27,31-35]. This purine-pyrimidine alternating sequence
can result in a Z-DNA conformation and negatively
affect transcriptional activity [36,37]. (GT)n repeat length
polymorphisms have been associated with many differ-
ent diseases, including diabetes, cardiovascular, pulmon-
ary, and neurological disease as reviewed by Exner et al.)
and by Garcia-Santos & Chies, where long (GT)n re-
peats, associated with lower HO-1 expression, were
identified as risk factors [38,39].
Several studies have investigated a possible associ-

ation between HO-1 and Plasmodium falciparum in-
fections and have demonstrated both increased
expression of HO-1 during malaria infection [40-42]
and associations between HMOX1 promoter polymor-
phisms and malaria disease severity [32-35,43,44]. In
mice, an up-regulation of HO-1 was associated protec-
tion against cerebral malaria, whereas associations be-
tween the short, highly inductive (GT)n repeat alleles
and risk of severe malaria have been shown in human
studies in both The Gambia, Myanmar, and Angola
[32-34]. A lack of association between malaria severity
and length of GT repeats has been documented in
Thailand [35]. Still, the role of HO-1 during malaria
remains unclear [44].
In the present study, the presence of the two single-

nucleotide polymorphisms (T(−413)A and G(−1135)A)
and the length of the (GT)n repeat were assessed in
583 Ghanaian children with malaria from 0–15 years
of age to search for possible associations with malaria
disease susceptibility and severity.
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Methods
Study population
The study population consisted of patients admitted to
the Department of Child Health, Korle-Bu Teaching
Hospital, Accra, Ghana during the malaria season (June
to August) in 1995, 1996 and 1997, as described in detail
in earlier publications [45,46]. All patients were children
between 0 and 14 years of age who fulfilled the general
inclusion criteria of an asexual P. falciparum parasit-
aemia of more than 10,000 parasites/μl, and an axillary
temperature of more than 37.5°C. A total of 296 malaria
patients were enrolled; 101 with uncomplicated malaria
and 195 with severe malaria (defined as severe anaemia
(n=63) or cerebral malaria (n=132)). Patients with a
positive sickling test or any other disease than malaria
were excluded as a criterion used in the study the sam-
ples were originally collected for. Blood samples from
healthy sickle cell-negative children between 0 and
15 years of age were collected as control samples from
Dodowa, a nearby community (n=287). Both patients
and controls were included after signed consent from
patients or guardians after receiving standardized infor-
mation in local language. Both patient and control popu-
lation is a mixture of several ethnic groups, possibly
with a slightly more uniform population in Dodowa.
However, Ga-Adangme is the dominating ethnic group
in both populations. The study population is well de-
scribed with very thorough patient characterization and
has been studied extensively, among other things, with
regards to mannose-binding lectin genotypes [45] and
complement receptor 1 [47]. The study was approved by
Table 1 Primer sequences and conditions for the polymerase

Allele specific PCRs

Fw

Rw A(−413)

Rw (−413)T

Conditions

Restriction fragment length
polymorphism

Fw

Rw

Conditions

(GT)n repeat length polymorphism

Fw (5’fam)

Rw

Conditions

Primer sequences and conditions for the PCR reactions used to determine the poly
PCRs and the restriction fragment length PCR contains a mismatch (Italic). The forw
(highlighted). Primers for the allele specific PCRs were designed based on the HM
fragment length PCR and (GT)n repeat length PCR were designed by He et al. [30
the ethics and protocol review committee at the Univer-
sity of Ghana Medical School and the Ministry of
Health, Ghana.

DNA extraction and whole genome amplification
Upon admission, venous blood samples were collected in
EDTA-containing test tubes. Within two hours after col-
lection, plasma was separated, and pellets frozen at −20°C.
Genomic DNA was extracted as described previously [48].
Whole genome amplification of the extracted products
was performed with Repli-g Mini Kits (Qiagen, Copenhagen,
Denmark).

Determining SNPs in the HMOX1 promoter
Two SNPs were analysed in the HMOX1 promoter; the
T(−413)A and G(−1135)A. A simple allele-specific PCR
was developed to detect the T(−413)A SNP. Two
primer-pairs were designed to amplify a 307-bp target
sequence based on the nucleotide sequence of Genbank
S58267, sharing the same forward primer, and only differ-
ing in the 3’-nucleotide end of the reverse primers, making
them allele specific. Furthermore, to increase the specifi-
city of the allele-specific primers, a mismatch near the
3’ends were introduced (Table 1). The PCR products were
subsequently analysed by 1.5% agarose gel electrophoresis.
A restriction fragment length polymorphism (RFLP)

analysis was used to detect the G(−1135)A SNP. Primers,
as described elsewhere [30], contained a mismatch (see
Table 1), which creates a restriction site in the amplified
product if the G allele is present. The PCR products were
then digested overnight with the restriction enzyme HpaII
chain reactions (PCRs)

Sequences

5′-ACTGGCACTCTGCTTTATGTGTGA-3′

5′-GGAGGCAGCGCTGCTCAGAGTAAT-3′

5′-GGAGGCAGCGCTGCTCAGAGTAAA-3′

95°C 15 min, 35 cycles: (94°C 30 sec, 60°C 30 sec, 72°C 30 sec),
72° 10 min

5′-TTATTTTATATTTTGTAGAGCC-3′

5′-AGATGATTCATACAGTCCTTTC-3′

94°C 15 min, 45 cycles: (94°C 30 sec, 49°C 30 sec, 72°C 3 min),
72° 10 min

5′-AGAGCCTGCAGCTTCTCAGA-3′

5′-ACAAAGTCTGGCCATAGGAC-3′

95°C 15 min, 30 cycles: (95°C 30 sec, 64°C 30 sec, 72°C 30 sec),
72° 10 min

morphisms in the HMOX1 promoter. The primer pairs for the allele specific
ard primer for the (GT)n repeat length PCR is fluorescein-conjugated
OX1 nucleotide sequence (Genbank S58267). The primers for the restriction
] and Takeda et al. [33], respectively.
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at 37°C and visualized on a 1.5% agarose gel, showing one
band of 225 bp (homozygote for the A allele), two bands
of 23 and 202 bp (homozygote for the G allele) or all three
bands (heterozygote).
For both PCR protocols, one μl DNA extract was

amplified in a 20 μl reaction mix consisting of 4.0 μl
H2O, 5.0 μl 2.0 μM primermix and 10.0 μl TEMPase
Hot Start (Ampliqon, Odense, Denmark). The reactions
were performed in a 96-well PCR plate (Starlab GmbH,
Hamburg, Germany) in a VWRi Duo Cycler (VWR/
Bie&Berntsen, Radnor, PA, USA). Conditions for ampli-
fication are provided in Table 1. Selected samples were
sequenced by Sanger to verify the genotyping of the two
SNPs.

Determining the HMOX1 promoter (GT)n repeat length
polymorphism
A PCR product containing the (GT)n repeat was ampli-
fied with a fluorescein-conjugated forward primer and
an unlabelled reverse primer designed by Takeda et al.
[33] One μl DNA was amplified in a 10 μl reaction con-
sisting of 1.5 μl H2O, 2.5 μl 1.0 μM primermix and
5.0 μl TEMPase Hot Start DNA Polymerase (Ampliqon,
Odense, Denmark). The reactions were performed in a
96-well PCR plate (Starlab GmbH, Hamburg, Germany)
in a VWRi Duo Cycler (VWR/Bie&Berntsen, Radnor,
PA, USA). Primer sequences and amplification condi-
tions are provided in Table 1. One μl PCR product was
added to a 10.5 μl reaction containing 9.25 μl HiDi for-
mamideTM (Applied Biosystems, Foster City, CA, USA)
and 0.25 μl GeneScanTM 500 LIZTM Dye Size Standard
(Applied Biosystems, Foster City, CA, USA) in a 96 well
MicroAmp® Optical Reaction Plate (Applied Biosystems,
Foster City, CA, USA) and denatured for 3 minutes at
95°C before analysis with an ABI 3730 XL Genetic
Analyzer (Applied Biosystems, Foster City, CA, USA).
Table 2 Demographics of the study population

Controls (n=287) Uncomplicated malaria

Age (years)

Mean ± SD 8.01 ± 3.97 5.51 ± 3.32

Minimum/Maximum 0-15 0.5-14

Sex (n)

Male 145 (50.52%) 55 (54.46%)

Female 142 (49.48%) 46 (45.54%)

Parasitaemia (p/ul)

Median - 52.000

Percentiles 25 and 75 - 24.941-121.912

Haemoglobin (g/dl)

Mean ± SD - 10.49 ± 1.89

Minimum/Maximum - 6.80-17.5

Demographic data for the Ghanaian control, uncomplicated malaria, severe anaemi
Subsequent allele scoring of the microsatellites was per-
formed using GeneMapper version 4.1 (Applied Biosys-
tems, Foster City, CA, USA). Alleles were divided into
short repeats “S” (<27 repeats), medium “M” (27–32 re-
peats) and long “L” (>32 repeats) based on earlier classi-
fications [26,34,49]. Selected samples were sequenced to
verify the determination of repeats.
Statistical analysis
Deviations from the Hardy-Weinberg equilibrium at the
two loci; T(−413)A and G(−1135)A were tested using
The Court Lab Calculator [50]. Cut-off was set to p <
0.05. Allele and genotype frequencies were compared be-
tween the disease groups with Chi-square or Fisher’s
exact test (SigmaPlot 12.3 SPSS Inc., USA) for the SNPs
and the repeat length polymorphism. Associations be-
tween alleles, genotypes, or haplotypes, and disease
groups were investigated with logistic regression models
to determine odds ratio and p values, with disease group
as outcome variable (defined as controls, uncomplicated
malaria patients, and severe malaria patients (collectively
and divided into severe anaemia and cerebral malaria).
Age and gender were included as covariates; p-values <
0.05 were considered significant. Calculations were per-
formed using SAS ver. 9.2, (2002–2008, SAS Institute
Inc., Cary, NC, USA). Linkage disequilibrium was calcu-
lated using Arlequin [51].

Results
Population demographics
In total, blood samples were collected from 287 controls
and 296 patients; 101 with uncomplicated malaria, and
195 with severe malaria (defined as severe anaemia
(n=63) or cerebral malaria (n=132)). All patients were
children 0–15 years of age (see Table 2).
(n=101) Severe anaemia (n=63) Cerebral malaria (n=132)

2.92 ± 2.62 4.81 ± 2.77

0-12 0.5-13

40 (63.49%) 69 (52.27%)

23 (36.51%) 63 (47.72%)

50.265 97.157

17.730-114.295 33.788-212.900

4.10 ± 1.17 7.56 ± 2.26

1.80-11.20 0.80-13.40

a and cerebral malaria groups.



Table 3 Prevalence of the T(−413)A and G(−1135)A alleles and genotypes

T(−413)A Alleles and
genotypes N (%)

Controls
(n=281)

Uncomplicated
malaria (n=95)

Severe anaemia
(n=61)

Cerebral malaria
(n=119)

Alleles A 175 (31.1) 56 (29.5) 35 (28.7) 70 (29.4)

T 387 (68.9) 134 (70.5) 87 (71.3) 168 (70.6)

Genotypes A/A 26 (9.3) 11 (11.6) 5 (8.2) 12 (10.1)

A/T 123 (43.8) 34 (35.8) 25 (41.0) 46 (38.7)

T/T 132 (47.0) 50 (52.6) 31 (50.8) 61 (51.3)

G(−1135)A Alleles and
genotypes N (%)

Controls
(n=238)

Uncomplicated
malaria (n=78)

Severe anaemia
(n=55)

Cerebral malaria
(n=107)

Alleles G 397 (83.4) 123 (78.9) 91 (82.7) 179 (83.6)

A 79 (16.6) 33 (21.2) 19 (17.3) 35 (16.4)

Genotypes G/G 179 (75.2) 57 (73.1) 42 (76.4) 81 (75.7)

G/A 39 (16.4) 9 (11.5) 7 (12.7) 17 (15.9)

A/A 20 (8.4) 12 (15.4) 6 (10.9) 9 (8.4)

Prevalence of alleles and genotypes in controls, uncomplicated malaria, severe anaemia and cerebral malaria groups. No significant differences in the allele or
genotype distribution were found between any of the groups (p > 0.05. G(−1135)A was excluded from further analysis since the control group failed the Hardy-Weinberg
equilibrium test.
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Allele and genotype frequencies of the SNPs in the
HMOX1 promoter
The allele-specific PCR and RFLP analysis successfully
determined the allele distribution of the T(−413)A SNP
in 556 of 583 samples (95.4%) and the G(−1135)A SNP
in 478 of 583 samples (82.0%), respectively. Results were
confirmed by sequencing of selected samples represent-
ing the six possible genotypes. As can be seen in Table 3,
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Figure 1 Frequency distribution of the (GT)n repeats in the study groups. F
groups.1A: The control group. 1B: The uncomplicated malaria group. 1C: Th
the T(−413) allele was common in the study population
(69.8%), reflected in high frequencies of both the hetero-
zygote A/T (41.0%) and homozygote T/T (49.3%) geno-
type. The G(−1135) allele was common (82.6%) with a
frequency of 75.1% of the homozygote genotype G/G
and 15.1% of the heterozygote G/A. The T(−413)A geno-
type distribution was found to be in Hardy-Weinberg
equilibrium (Χ2=0.42, p=0.51), whereas, the G(−1135)A
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Table 4 Prevalence of the categorized (GT)n repeat alleles and genotypes

Microsatellites Alleles &
genotypes N (%)

Controls
(n=564)

Uncomplicated
malaria (n=95)

Severe anaemia
(n=58)

Cerebral malaria
(n=128)

Alleles S 114 (20.2) 41 (21.6) 23 (19.8) 48 (18.8)

M 210 (37.2) 68 (35.8) 40 (37.5) 100 (39.1)

L 240 (42.6) 81 (42.6) 53 (45.7) 108 (42.2)

Genotypes S/S 12 (4.3) 6 (6.3) 3 (5.2) 6 (4.7)

S/M 41 (14.5) 12 (12.6) 6 (10.3) 23 (18.0)

S/L 49 (17.4) 17 (17.9) 11 (19.0) 13 (10.2)

M/M 44 (15.6) 17 (17.9) 5 (8.6) 20 (15.6)

M/L 81 (28.7) 22 (23.2) 24 (41.4) 37 (28.9)

L/L 55 (19.5) 21 (22.1) 9 (15.5) 29 (22.7)

Frequencies of the alleles and genotypes of the categorized (GT)n repeat alleles in Short “S” (<27), Medium “M” (27–32) and Long “L” (>32). No significant
differences in the allele or genotype distribution were found between any of the groups (p > 0.05).

Hansson et al. Malaria Journal  (2015) 14:153 Page 6 of 9
genotype distribution was not in equilibrium, (Χ2=107.9,
p < 0.0001) and this SNP was therefore excluded from
further analysis. Analysis of the T(−413)A alleles and
genotype frequencies showed no significant differences
between the control, uncomplicated or severe malaria
(cerebral malaria, severe anaemia and total) groups (p >
0.3 in all cases). Furthermore, logistic regression, ad-
justed for age and sex, showed no significant association
Table 5 Combinations of the (GT)n repeat and A(−413)T
genotypes

(GT)n T(−413)A N (%) OR (95% CI) P value

SS AA 0 (0.0) - -

SS AT 3 (0.6) 1.77 (0.15-21.34) 0.65

SS TT 23 (4.3) 0.63 (0.22-1.84) 0.40

SM AA 3 (0.6) <0.001 (<0.001- > 999.99) 1.0

SM AT 54 (10.0) 1.01 (0.46-2.22) 1.0

SM TT 22 (4.1) 1.12 (0.42-3.37) 0.75

SL AA 2 (0.4) <0.001 (<0.001- > 999.99) 1.0

SL AT 21 (3.9) 0.39 (0.09-1.58) 0.19

SL TT 65 (12.1) 0.70 (0.33-1.50) 0.36

MM AA 37 (6.9) 0.66 (0.27-1.58) 0.35

MM AT 27 (5.0) 0.70 (0.24-2.04) 0.52

MM TT 18 (3.4) 0.59 (0.14-2.45) 0.47

ML AA 9 (1.7) 1.43 (0.28-7.21) 0.66

ML AT 90 (16.7) 1.30 (0.66-2.57) 0.45

ML TT 57 (10.6) 0.71 (0.31-1.62) 0.42

LL AA 2 (0.4) <0.001 (<0.001- > 999.99) 0.99

LL AT 25 (4.7) 0.13 (0.02-1.08) 0.06

LL TT 80 (14.9) Reference -

Frequencies of the T(−413)A genotypes combined with the genotypes of the
(GT)n repeats. The combinations ML/AT, LL/TT, SL/TT, ML/TT, SM/AT were the
most prevalent. No significant association with severity of malaria was found
by analysis with logistic regression models, adjusted for age and sex.
Significance level p < 0.05.
between the T(−413)A alleles or genotypes and severity
of malaria (p > 0.4 in all cases).

Allele and genotype frequencies of the (GT)n repeat
length polymorphism in the HMOX1 promoter
The (GT)n repeat length polymorphism were success-
fully genotyped in 572 of 583 samples (98.1%). Sequen-
cing of selected samples was performed to define the
size of the repeats (data not shown). The distributions in
the control, uncomplicated malaria, severe anaemia and
cerebral malaria groups are shown in Figure 1. In total,
twenty-six (GT)n alleles were identified, ranging from 21
to 46 repeats. The majority of alleles had lengths of 26
(8.1%), 29/30 (13.2/17.0%) or 39/40 (8.0/13.8%) GT re-
peats. The alleles were categorized into: short “S” (<27
repeats), medium “M” (27–32 repeats), or long “L” (>32
repeats). Based on these three categories, the patients
were classified as having a S/S, S/M, S/L, M/M, M/L or
L/L genotype. The allele and genotype frequencies are
shown in Table 4. The long repeat alleles (L) were the
most prevalent in all four study groups ranging from
42.6 to 45.7%, with high frequencies of the M/L (23.2-
41.4%) and L/L (19.5-22.7%) genotypes, whereas the
short repeat alleles (S) were found with the lowest fre-
quencies, ranging from 19.1 to 21.6%, and genotype fre-
quencies of 4.3-6.3% (S/S) and 12.6-18.0% (S/M). The
distributions of alleles and genotypes were compared be-
tween the groups; controls, uncomplicated malaria pa-
tients, severe anaemia and cerebral malaria patients (and
as a combined severe malaria patient group of severe an-
aemia and cerebral malaria). No significant differences
were found between any of the groups (p > 0.5 in all
cases). Logistic regression models were used to test for
an association between the alleles or genotypes and se-
verity of malaria. All models were adjusted for age and
sex. No significant associations were found (p > 0.7 in all
cases). Furthermore, the data was analysed comparing
genotypes containing at least one “L” allele (S/L, M/L,
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L/L) against non-L carriers (S/S, S/M, M/M) and no sig-
nificant differences were found (p > 0.9).

Analysis of the combination of the A(−413)T and (GT)n
repeat length polymorphisms
The T(−413)A and (GT)n repeat alleles were next con-
sidered together, and the frequencies are shown in
Figure 2. (−413)A/(GT)29, (−413)A/(GT)30 and T
(−413)/(GT)40 were the most common combinations
with frequencies of 22.4%, 30.4% and 19.1%, respect-
ively. It seems that the longer repeats are more often
present with a T(−413) allele than the shorter repeats
(p < 0.001), however, no linkage disequilibrium (LD)
was found (data not shown). In Table 5, the combina-
tions of the (GT)n repeat genotypes and the T(−413)A
genotypes are shown. The most prevalent combina-
tions were ML/TA (16.7%), LL/TT (14.9%), SL/TT
(12.1%), ML/TT (10.6%) and SM/TA (10.0%), whereas
the combination SS/AA was not found. A hypothesis
based on earlier human studies was that the combin-
ation LL/TT should confer protection against severe
malaria. However, analysis with the logistic regression
model showed that no combination were more likely
to develop severe malaria compared to LL/TT (p > 0.05).

Discussion
This study investigated the possible association between
HMOX1 polymorphisms and severity of malaria. Based
on earlier studies, it was hypothesized that certain poly-
morphisms in the promoter of the HMOX1 gene encod-
ing HO-1 could confer protection against severe
malaria. However, this study could not provide evidence
for such an association.
The (GT)n repeat length polymorphism have been

studied extensively in the past decade, relating short or
long repeat alleles to the risk of many different diseases
[38,39]. In this current study, the alleles ranged from 21
to 46 repeats, which is similar to findings in studies in
Angola and The Gambia [32,34]. However, there were
exceptions; short alleles down to 13 repeats were found
in The Gambia [34] and repeats > 41 found in the
present study were not found in Angola [32]. The major-
ity of the alleles had lengths of 26, 29/30 and 39/40 re-
peats, consistent with the study in The Gambia [34]. In
Angola, the distribution was slightly different, with the
most frequent alleles being 23, 29 and 38 repeats. The
differences in the alleles around 29/30 and 38–40 re-
peats found in the present study as compared to the two
previous studies, could be due to small discrepancies in
the analysis of the (GT)n nucleotide repeats. However,
this did not affect the length-category analysis since both
the 29 and 30 repeat alleles were categorized as
medium-sized and 38–40 as large. Studies outside Africa
have found much lower frequencies of the 39-repeat
allele than the current study of less than 3% in Japan
[28], Thailand [35] and Greece [31], and absent in a
study in Myanmar [33]). In contrast, the allele with 23
repeats was more prevalent in the studies outside
Africa with frequencies up to 30% [28,31,33,35] com-
pared to the 6% found here. In a Brazilian study, the
frequencies of both the 23- and 39-repeat alleles were
low (<2%), whereas alleles with 28–30 repeats all had
high frequencies (>65%) [44].
In both the Myanmar study and the two African

studies in Angola and The Gambia, short repeat alleles
were positively correlated with severity of malaria.
Studies in Thailand and Brazil have shown conflicting
results [35,44]. In the Brazilian study, long (GT)n re-
peats were associated with symptomatic malaria, how-
ever, the patients were mainly infected with P. vivax
and only five severe cases were included [44]. In
Thailand, no association between the (GT)n repeats
and severity of malaria was found, however, limited
sample size in some groups might have influenced re-
sults and furthermore, the study group consisted of
both P. falciparum and P. vivax infected patients [35].
Although an association between the (GT)n repeat
polymorphism and severity of malaria has been shown
in two other African populations, this study could not
confirm such association. In The Gambia, the allelic
and genotypic distributions were different from this
current study Thus, the severe malaria patients with
short repeat alleles were more prevalent in The Gambia
than in Ghana (50% vs 19%), and the long repeat alleles
more prevalent in Ghana (43% vs 26%) [34]. This was
also reflected in the genotypes, with frequencies of 28%
(S/S) and 8% (L/L) in the severe malaria patients in
The Gambia compared to frequencies of 5% and 20%
in Ghana, respectively. The patient sample size was
equivalent to the Gambian and Angolan studies;
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however, differences in study population, study design,
age, or malaria transmission might influence results.
As with pro-inflammatory cytokines for example, ex-

cessive levels are cytotoxic [34] and the optimal levels of
HO-1 might be a balancing act since both low and very
high levels of the enzyme are associated with cytotoxic
effects [21,22,52,53]. HMOX1 has been associated with
several diseases [38,39], which may have blurred a pos-
sible selective force of malaria on HMOX1.
Two single nucleotide polymorphisms (SNPs) in

HMOX1 were also determined. No analysis was done re-
garding the G(−1135)A SNP, since none of the groups
were in Hardy-Weinberg equilibrium. The T(−413)A SNP
has been associated with differences in promoter activity,
however, it has not been studied as extensively as the (GT)
n repeat length polymorphism. The frequency distribution
of the T(−413)A SNP reported here is similar to previous
findings in a Chinese population [30] and a study based on
North Americans and Europeans [54]. However, it differed
significantly from a Japanese population where the AA
genotype was more prevalent than in the Ghanaian popu-
lation (26.9 vs 9.7%) whereas the TT genotype was more
prevalent than in the Japanese population (49.3% vs 24.5%)
[27]. In contrary to our initial hypothesis, no association
between genotypes and malaria severity was found.
When alleles of the T(−413)A SNP and (GT)n repeat

alleles were considered together, long repeats were
mostly found with the T(−413) allele, which is consistent
with the findings of the Japanese study [27]. However,
there was no linkage disequilibrium between the alleles.
Furthermore, the T(−413)A and (GT)n repeat category
genotypes were combined; no association with severity
of malaria was found. Thus in summary, based on the
findings of this study together with the fact that previ-
ously found associations between malaria and HMOX1
have shown effects in opposing directions suggest that
malaria does not seem to be a major selective force on
the polymorphisms of the HMOX1 promoter.

Conclusion
The GT)n repeat allele frequencies found in this study
are similar to those of other African studies. However,
the association between the (GT)n repeat alleles and
severity of malaria was not confirmed in this well-
characterized Ghanaian population [45]. Furthermore,
the A(−413)T SNP showed no association with severity
of malaria alone or in combination with the (GT)n re-
peat alleles. In this population, the polymorphisms of
the HMOX1 promoter are not associated with severity
of malaria, and another selective force may be influen-
cing these alleles.
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